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Abstract. We study stochastic motion of solitary excitations on a classical, discrete, isotropic,
ferromagnetic Heisenberg spin chain with nearest-neighbour exchange interactions. Gaussian
white noise is coupled to the spins in a way that allows for the noise to be interpreted as a stochastic
magnetic field. The noise translates into a collective stochastic force affecting a solitary excitation as
a whole. The position of a solitary excitation has to be calculated from the noisy spin configuration,
i.e. the position is defined as a function of the spin components. Two examples of such definitions are
given, because we want to investigate the dependence of the results on the choice of definition. Using
these definitions, we calculate the variance of the position as a function of time and determine the
variance from simulations as well. The calculations require knowledge of the shape of the solitary
wave. We approximate the shape with that of soliton solutions of the continuum Heisenberg chain,
restricting our considerations to solitary waves of large width, in which case this approximation is
good. The calculations yield a linear dependence of the variance on time, the slope being determined
by parameters describing the shape of the soliton. The two definitions of the position we use provide
different results for this slope. The origin of this difference is discussed. With both definitions very
good agreement is found between the results of the simulations and the corresponding theoretical
results, for not too large time scales.

1. Introduction

Many equations modelling nonlinear physical systems exhibit solutions in the form of coherent
excitations. At least approximately, these excitations behave rather like a particle than like
a particular configuration of a field or of constituents of a discrete system. Most prominent
examples are solitons, which appear as solutions of, for example, the Korteweg–de Vries
equation or the sine–Gordon equation. Further nonlinear coherent excitations include vortices
in (super)fluids or two-dimensional easy-plane magnets.

The particle-like behaviour of such excitations very often greatly facilitates theoretical
work. In the case of a coherent excitation in a discrete system for instance, the degrees of
freedom of the constituents of the system combine to form the coherent excitation, a usually
large number of degrees of freedom thereby being submerged and replaced with considerably
fewer ‘effective’ degrees of freedom, describing the particle-like dynamics of the coherent
excitation. Coherence of an excitation can also be regarded as a family of constraints,
reducing the number of degrees of freedom and leaving only particle-like ones, describable by
‘collective’ coordinates.

For physical reasons it is often desirable to include perturbations of the system studied
into the equations of motion. These perturbations can, for instance, model the effect of
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influences from outside the system on an excitation of the system as described by a solution
of the unperturbed equations. The particle-like character of coherent excitations is further
emphasized by their stability against these perturbations, at least as long as the perturbations can
be considered small. By stability we mean that, though some characteristics of the unperturbed
system, like integrability for example, may be lost by introducing the perturbations, solutions
to the unperturbed equations can often serve as very good approximations to the solutions
of the perturbed system. Thus, while the solution representing, for instance, a soliton in an
integrable system may no longer continue to be a soliton in the strict sense, when perturbations
are introduced that destroy integrability, the solution may still represent an excitation of the
system that propagates without changing its shape significantly, i.e. the excitation remains
coherent. Due to this fact it is possible to use collective coordinates when studying effects of
particular perturbations on coherent excitations. An especially important class of perturbations
are stochastic perturbations, very often in the form of noise coupled to the system under
study. Investigations of the effects of noise have been carried out, for example, for the sine–
Gordon [2–5] andφ4 [6, 7] equations or the above mentioned vortices in two-dimensional
easy-plane magnets [8].

This paper shows the stochastic position shifts of solitary excitations on the classical,
discrete, isotropic, ferromagnetic Heisenberg spin chain, when the spins are subject to Gaussian
white noise.

In section 2 the Hamilton function and the equations of motion for the spins are introduced.
We also present the soliton solutions of the continuum Heisenberg chain which will serve as
approximations to the shape of the solitary wave on the discrete chain at a certain stage of the
calculations. The equations of motion are extended to include damping and noise in section 3.
We use Gilbert damping and couple the noise to the spins in a way that suggests an immediate
physical interpretation of the noise as a magnetic field which is varying stochastically in
space and time. In section 4 we give two examples (more can be thought of) of definitions
of the position of the solitary excitation as a function of the spin components and calculate
the variance of the position, approximatively neglecting magnons excited by the noise. Both
definitions yield a linear dependence of the variance on time, but different results for the slope.
This difference is discussed. The theoretical results of section 4 are then compared with spin
dynamics simulations of the discrete chain in section 5. We find very good agreement for all
choices of soliton parameters studied, at least as long as the observations are not extended
over too large timespans. For longer times our theory fails, as the numerical results indicate a
time dependence of the variance including higher than linear powers of time. In section 6 we
discuss our results, in particular the appearance of higher powers oft in Var[X(t)]. Finally, our
results are summarized in section 7. Because of the stability of coherence we have discussed
above, we take the liberty of using the terms soliton, solitary wave and solitary excitation
synonymously throughout the following sections, see also the pertinent discussion in [1].

2. The Heisenberg chain

The classical, isotropic Heisenberg chain is described by the Hamilton function

H = −J
N−1∑
n=1

ESn · ESn+1 (1)

which in the caseJ > 0 represents a ferromagnetic system. The indexn labels the sites on
the chain andN is the number of spins constituting the chain. The lattice constant has been
set to unity, the dimensionless parameterJ measures the coupling in units of a fixed, positive
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scaleJ0 and the spinlength is measured in units of a scaleS0. Thus energies are given in units
of J0S

2
0, and time is measured in units of ¯h/(J0S

2
0).

The equation of motion governing the dynamics is the Landau–Lifshitz equation, see [14],

d

dt
ESm = −ESm × EBm. (2)

Here EBm denotes an effective magnetic field at sitem, the ith component of which reads
Bim = dH/dSim, resulting in EBm = −J (ESm−1 + ESm+1). It is understood that in the case of
the left-most sitem = 1 one has to drop the spin indexedm − 1 and that in the case of the
right-most sitem = N no spin indexedm + 1 appears. Thus we are using free boundary
conditions. In the continuum approximation [11,14] the spinsESm(t) are replaced withES(r, t),
and the equation of motion (2) reads

d

dt
ES = J ES × ∂2

r
ES. (3)

Equation (3) is known to possess soliton (in the strict sense) solutions [10–13], which, using
spherical polar coordinates to describe the orientation of each spin in space, can conveniently
be expressed in terms of fields9(r, t) and8(r, t), related toES(r, t) by

ES = (Sx, Sy, Sz) = S
(√

1−92 cos(8),
√

1−92 sin(8),9
)
. (4)

Here9 is the cosine of the polar angle2. The soliton solutions read

9(r, t) = 1− A
[
sech

(
r −X
0

)]2

(5)

8(r, t) = 80 + ωt +

√
2

A
− 1

r −X
0

+ arctan

[√
A

2− A tanh

(
r −X
0

)]
. (6)

The shape of theSz distribution given by (5) is a localized pulse; at large distances from the
soliton the spins tend to the same ground-state configuration on either side of the pulse. In this
ground-state configuration all spins are parallel to each other and point in thez direction. The
parameters0 andA appearing in (5) and (6) are the width and the amplitude of the soliton,
respectively. In the unperturbed system the excitation moves at constant speed, its positionX

at timet being

X(t) = X0 + t · JS 2

0

√
2

A
− 1. (7)

Additionally, the projections of the spins onto thexy plane rotate, independently of the soliton
position, at a frequencyω = 2JS/(A02). The energy of the soliton relative to the ground state
isEsoliton= 4JS2/0. The solutions cited here will be used later to approximate the shape of
solitary waves on a discrete chain.

3. Damping and noise

Taking into account damping and noise requires a modification of the equation of motion (2),
a possible one being [9,15,16]

d

dt
ESm + ε ESm × d

dt
ESm = −ESm × [ EBm + Ebm] (8)

which has to be interpreted as a Stratonovich stochastic differential equation. For similar
approaches to the dynamics of magnetic moments see [17, 18]. The second term on the LHS
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of (8) is Gilbert damping, which is isotropic as opposed to the Landau–Lifshitz damping [16].
Its magnitude is scaled by the parameterε. On the RHS of this equation, a noise termEbm has
been added to the effective magnetic fieldEBm. The physical interpretation is that the stochastic
perturbations considered in this article are local fluctuations of the effective magnetic field.
This choice of coupling between spins and noise appears more natural than simply adding
a stochastic term to the RHS of (2) as was done in [8]. Such an additive coupling lacks
immediate physical interpretation. Moreover, the spinlength is not a conserved quantity of the
corresponding equation of motion. The latter pain was cured in [8] by introducing conservation
of the spinlength as a constraint, but this led to additional coupling terms between spins and
noise, which had the structure of multiplicative couplings. In contrast to these disadvantages,
the coupling we have chosen suggests the physical interpretation stated above and retains
the spinlength as a conserved quantity of (8). Due to the vector product, the components of
the spins and of the noise are coupled multiplicatively. A comparison between the additive
coupling and the coupling chosen here can be found in [9] for the case of a two-dimensional
system. The noise in (8) is Gaussian white noise, satisfying

〈Ebm(t)〉 = 0
〈bim(t1)bjn(t2)〉 = σ 2δij δmnδ(t1− t2)
σ 2 = Var(bim).

(9)

Together, the damping and the noise simulate the coupling of the spin chain to a thermal bath, the
noise representing energy transferred to the chain from the bath, whereas the damping dissipates
energy. This coupling is comparatively simple. An investigation of more complicated spin-
environment couplings can be found in [19], see also references therein. The effects of damping
on solitons in the continuum chain were studied in [20]. After a period of time that, as we have
observed in numerical simulations, is approximately given by 5ε−1 (in dimensionless units),
the mean thermal energy of the chain has reached saturation, i.e. in the mean the amount of
energy supplied to the chain by the noise is equivalent to the amount of energy dissipated by
the damping. For temperatures such thatkBT /JS

2 � 1 (kB is Boltzmann’s constant), the
mean thermal energy per pair of neighbouring spins (there areN − 1 such pairs for a chain
of N spins) iskBT and the variance of the noise corresponding to this saturation value is
approximatelyσ 2 = 2εkBT .

4. Calculation of the variance ofX(t)

In this section we calculate the variance of the trajectories of a solitary wave subject to noise
characterized by (9). To this end, we need an expression for the positionX of the excitation
on the chain. We have generated numerically the time evolution of the discrete chain, using
continuum soliton solutions as initial conditions; we have found that the shape of large-width
solitary excitations of the discrete chain, to which our considerations are restricted, is very
accurately given by the continuum soliton solutions (5) and (6). Thus we can conclude that
S − Sz is a symmetric pulse centred at the position of the soliton. Consequently, the first
moment of this function reproduces the position of the soliton. However, this is not the only
possible definition.(Sx)2 + (Sy)2 = S2 − (Sz)2 is also shaped like a symmetric pulse and
is also centred at the soliton position. The first moment of this function thus reproduces the
position of the solitary wave, as well. Of course, further suitable definitions of the position
can be devised. In the following, the two examples provided above will be used.
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Definition 1. X defined as the first moment ofS − Sz

X :=
∑N

n=1 n(S − Szn)∑N
m=1(S − Szm)

. (10)

This leads immediately to

dX

dt
= 1∑N

m=1(S − Szm)
N∑
n=1

(X − n)Ṡzn. (11)

Neglecting the damping term in (8), we have

dX

dt
=
∑N

n=1(X − n)[−ESn × EBn]z∑N
m=1(S − Szm)

+

∑N
n=1(X − n)[−ESn × Ebn]z∑N

m=1(S − Szm)
. (12)

Now we approximate the vectorsESn with their ‘deterministic’ values, i.e. we regardESn as given
by the fictitious spin configuration obtained when neglecting magnons excited by noise but
keeping the noise-induced stochastic nature ofX. Note that both fractions in (12) containX.
However,X only appears in the combination(X− n), so that sums containing this expression
can be considered as sums over indices relative to the current position of the soliton. Thus,
these sums are independent of the position of the soliton, at least approximately. A dependence
on the exact position of the solitary wave cannot be ruled out entirely, becauseX takes values
in the reals, whereasn is limited to integer values. As we consider only excitations of a width
much larger than the lattice constant, this dependence should be very weak and henceforth we
shall neglect it. Then (12) can be written

dX

dt
= Fdet + Fst(t) (13)

with a deterministic and a stochastic part of the force. Here the two terms on the RHS are defined
by the corresponding two fractions on the RHS of (12). Within the above approximations the
deterministic part of the force is constant and the time dependence of the stochastic part is
caused only by the time dependence of the noise. We therefore splitX(t) = Xdet(t) +Xst(t),
whereXdet andXst are defined as solutions to

dXdet

dt
= Fdet (14a)

dXst

dt
= Fst(t) (14b)

respectively. Equation (14b) with the initial conditionXst(0) = 0 yields

Xst(t) =
∫ t

0
Fst(t

′)dt ′. (15)

Thus

〈Xst(t1)Xst(t2)〉 =
∫ t1

0

∫ t2

0
〈Fst(t

′
1)Fst(t

′
2)〉dt ′1 dt ′2. (16)

Using the explicit form ofFst and the properties of the noise, (9), we get

〈Fst(t
′
1)Fst(t

′
2)〉 = σ 2 〈

∑N
n=1(X − n)2[S2 − (Szn)2]〉

[
∑N

m=1(S − Szm)]2
δ(t ′1− t ′2). (17)

In the derivation of (17) we had to calculate expressions such as〈∑
n,m

(X(t ′1)− n)(X(t ′2)−m)Sxn (t ′1)Sxm(t ′2)byn(t ′1)bym(t ′2)
〉

(18)
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which were evaluated to∑
n,m

〈(X(t ′1)− n)(X(t ′2)−m)Sxn (t ′1)Sxm(t ′2)〉〈byn(t ′1)bym(t ′2)〉 (19)

likewise for similar expressions. This would be correct if noise and spin configuration were
completely uncorrelated. We have already approximated the spin configuration by neglecting
magnons, so the only remaining correlation between spins and noise must stem from the
influence the noise has onX. As the spin components in (18) are themselves functions of
X− n, shifts ofX can only change the sum due to differences between the noise components
in the vicinity of the shifted and the unshifted position. The components of the noise are,
however, mutually uncorrelated. Therefore the replacement (18)→ (19) appears justified.
Another way of seeing this is the following: (14b) has to be interpreted as a Stratonovich
stochastic differential equation for the variableXst; it can be transformed to Ito form [21]. No
additional deterministic contributions arise from the transformation in this case. The noise
components and the stochastic variableXst are rendered uncorrelated, however. So the above
replacement is exact within the ‘deterministic’ approximation for the spinsESn introduced after
(12). The problem of correlations between spins and noise was similarly addressed in [9].

To explicitly evaluate (17) we now make use of the soliton solution for the continuum,
(5). ReplacingX − n→ X − r we find

〈Fst(t
′
1)Fst(t

′
2)〉 = σ 2

∫
(r −X)2[1−92]dr

[
∫
(1−9)dr]2

δ(t ′1− t ′2). (20)

Using (5) and (20) in (16) leads to

〈Xst(t1)Xst(t2)〉 = σ 2

36
0

[
3π2

A
+ 6− π2

]
min(t1, t2). (21)

As we are especially interested in the variance of the trajectory and use noise withσ 2 = 2εkBT ,
we can write:

Var[X(t)] = Var[Xst(t)] = εkBT 0

18

(
3π2

A
+ 6− π2

)
t. (22)

Definition 2. X defined as the first moment of(Sx)2 + (Sy)2.

Here we defineX as

X :=
∑

n n[(Sxn )
2 + (Syn )2]∑

m[(Sxm)2 + (Sym)2]
. (23)

Taking the time derivative on both sides results in

Ẋ = 2∑
m[(Sx)2 + (Sy)2]

∑
n

(n−X)(Sxn Ṡxn + Syn Ṡ
y
n ). (24)

Proceeding with this equation in the same way as with the corresponding equation in the case
of the first definition ofX, (10), one obtains a stochastic force

Fst = − 2∑
m[(Sxm)2 + (Sym)2]

∑
n

(n−X)[Sxn (Synbzn − Sznbyn) + Syn (S
z
nb
x
n − Sxnbzn)]. (25)

The correlation function of the stochastic force in continuum approximation is

〈Fst(t1)Fst(t2)〉 = 4σ 2δ(t1− t2)∫
(1−92) dr

∫
(r −X)292(1−92) dr (26)
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and we finally arrive at

Var[X(t)] = εkBT 0

70(A− 3)2

[
1050 + 196A2 − 840A + π2

(
112A− 175− 24A2 +

105

A

)]
t.

(27)

Obviously the results (22) and (27) are different and will be discussed below. With both
definitions of the soliton position the resulting expression for the variance is independent ofJ

andS. The linear dependence ont shows that the stochastic motion of the soliton is a simple
random walk, with an effective diffusion constantD—defined as the slope of Var[X(t)] as a
function of time.D depends on the shape of the soliton, which is parametrized by0 andA.
The linear dependence on0 is no surprise. The stochastic forcesFst, (12) and (25), are given
as sums over lattice sites, to which only sites near the soliton contribute essentially. Within the
approximations detailed above, the contributions of individual sites are mutually stochastically
independent. So the variance of the sum of these contributions equals the sum of the variances
of the contributions of all individual sites. The number of sites contributing essentially to this
sum should be proportional to the width0 of the soliton. Additional factors appearing in (22)
and (27), apart from damping, temperature and time, take into account that the contributions
from different sites are not equal, but are weighted by the structure of the soliton.

For both definitions ofX the spin configuration has been approximated with the
unperturbed soliton structure. Thus at first sight it may appear strange that the results are
different. To understand this difference it is necessary to realize how the noise actually effects
a shift of the soliton position. The noise creates fluctuations of the spin configuration. In turn,
these fluctuations result in distortions of the respective weights,S − Sz for the first definition
and(Sx)2 + (Sy)2 for the second definition. Upon evaluation of (10) or (23), these distortions
generate shifts ofX. As can be seen from (10) and (23), only that part of a distortion of a
weight function which is antisymmetric with respect to the current value ofX can shiftX. The
approximation we have made when replacing the spin configuration with the unperturbed one
consists in putting an unperturbed soliton at this shifted position and neglecting any fluctuations
still remaining. As details of the fluctuations are different between the two weights used, shifts
of X induced by the fluctuations are different. This explains the difference in the results. We
stress that the significant dependence of the effective diffusion constant on the definition of the
position is most likely not a peculiarity of the solitons studied in this article. On the contrary,
it has to be taken into account for all investigations of like kind.

Concluding this section we mention that by treating the sums in the deterministic part of
the force in a similar way as detailed above for the stochastic forces, both definitions of the
positionX yield

dXdet

dt
= JS 2

0

√
2

A
− 1. (28)

This result agrees with (7).

5. Results from simulations

We have performed simulations for the discrete chain, numerically solving (8) by means of the
Heun algorithm, which is particularly suited for the Stratonovich treatment of multiplicatively
coupled stochastic terms [22]. The simulations have been done for different temperatures and
a variety of soliton parametersA and0. Soliton solutions of the continuum equation have
served as initial configurations. As stated above, this approximation to solitary waves on the
discrete chain is justified, provided the width is large compared with the lattice constant. The
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D

Figure 1. SlopeD of Var[X(t)]. Symbols represent least square fits to numerical results obtained
from 1000 realizations of 25 time unit runs. Error bars give one standard deviation.J = 1,S = 1.
(a) Results from definition 1 forT = 0.0001, 0.001, 0.01 andA = 1. ◦: 0 = 10,Esoliton = 0.4,
the prediction is shown as a solid line;4: 0 = 40,Esoliton= 0.1, the prediction is given as a dashed
line. The threshold is 0.1. (b) Results forT = 0.001,0 = 40. D as function ofA. Comparison
between definition 1 (4), prediction plotted as a solid curve and definition 2 (5), prediction given
as a dashed curve. The threshold is 0.01.

latter is equal to 1 in our case and the smallest value chosen for the width in the simulations
is 0 = 10. For both weights,S − Sz and(Sx)2 + (Sy)2, only sites where the weight function
is larger than a certain threshold are taken into account when the soliton position is calculated
from the spin configuration. At these sites the value of the weight function is reduced by the
threshold value. This procedure excludes contributions of those fluctuations from the sums in
(10) and (23) which are located at a distance from the soliton. Inclusion of such fluctuations
obviously would be erroneous. The reduction of the weight function by the threshold value
reduces some errors caused by the discreteness of the system. Strictly speaking the threshold
should be taken into account in the theoretical prediction. The integrals (20) and (26) should
be restricted to those intervals where the weight functions are above the threshold. However,
the thresholds used are small in comparison with the amplitudes of the weight functions and
therefore this correction has been neglected. The damping parameter isε = 0.01 in all cases.
The variance of the noise is 2εkBT whereT is the temperature the system would assume in
saturation. Of course this statement is only valid as long askBT /(JS

2)� 1, see section 3. In
the captionsT denoteskBT in units ofJ0S

2
0.

Figure 1 shows some results obtained by measuring the variance of the position from
simulations and least square fitting a straight linev(t) = Dt to these numerical results. The
slopesD so determined are given as symbols in the figure. The error bars give one standard
deviation of the numerical data points from the fitted straight line. Note that the results in the
figures represent the ‘short-time’ behaviour of the corresponding excitations, as the numerical
results have been taken from runs of 25 time units. Figure 1(a) shows theT -dependence at
fixed amplitudeA for two values of the width; in both cases there is very good agreement
between theory and simulation. Figure 1(b) provides data for fixed width, fixed temperature
and various values ofA, comparing the results for the two definitions of the position. Very good
agreement between theory and simulations is found for both definitions. Thus the dependence
of D on the definition for the position, derived analytically in the previous section, is seen to
be confirmed by simulations. This is especially obvious for the data points belonging to larger
values ofA.
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Figure 2. Variance ofX as a function of time, determined with definition 1. Soliton parameters:
A = 1, 0 = 10. T = 0.001. 500 realizations. Solid curve:S = 1, J = 1, dotted curve:S = 2,
J = 0.5. In order of increasing deviation from the prediction (dashed curve) the graphs correspond
to threshold values of 0.05, 0.1, 0.2 forS = 1 and to threshold values of 0.1, 0.2, 0.4 forS = 2.

It has just been shown that the short-time behaviour of a solitary excitation is described
well by the results of the previous section. For longer times, deviations between theory and
simulations like those shown in figure 2 occur. Var[X(t)] as a function oft involves higher
than linear powers oft . The time interval after which this deviation from the linear dependence
on time becomes obvious depends significantly on the width of the excitation; the dependence
onA is less important, as long asA is considerably larger than the amplitudes of the thermal
excitations. For0 = 10, as in figure 2, this time is about 25 time units, for0 = 20 about
50 time units and for0 = 40 the linear dependence is confirmed up to about 630 time units.
These deviations can be expected to occur sooner or laterfor all choicesof the parameters0
andA.

Before we conclude this section we turn shortly to the saturated case. A length of time
equal to about 500 time units has been found sufficient for taking the system into energetic
saturation—understood of course as a statement referring to the average over a large number
of realizations. We have generated a ‘saturated’ configuration by performing a 500 time unit
prerun with one realization and then have used this configuration as the initial configuration
for runs over 4000 realizations from which the positions and the variance of the positions have
been determined. The results are shown in figure 3. The situation is basically the same as
for the unsaturated case discussed above. The short-time behaviour is well described by the
formulae derived in section 4. Higher than linear powers oft appear after about 20 time units
for the soliton of width0 = 10, while for the excitation with0 = 40 the linear behaviour
is confirmed for longer times—we have restricted the simulations to 100 time units to save
computing time. In the saturated case magnons abound on the chain, but at least for the
temperature range investigated here, they do not have any significant effect on the (initial)
slope of Var[X(t)]. The predictions shown in the graphs correspond to the calculations of
section 4, in which thermally excited magnons have been neglected. We therefore conclude
that apart from the appearance of higher powers oft in the behaviour of Var[X(t)], which
also show up in the unsaturated case, the theory developed in section 4 can be applied to the
saturated case as well. Our further investigations therefore focus on the unsaturated case. As
the higher powers oft seem to appear in Var[X(t)] for all excitations and to have a common
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Figure 3. Results in saturation after a prerun of 500 time units.T = 0.001.J = 1,S = 1. Dashed
line: theory, solid curve: numerical results (average over 4000 realizations, definition 1, threshold
0.1). (a) Before the prerun the soliton parameters wereA = 1,0 = 40,Esoliton= 0.1. The effects
of damping were small during the prerun, thus those parameters have been used for the prediction.
(b) Before the prerun the soliton parameters wereA = 1,0 = 10. For this excitation the effects of
the damping were larger. The parameters used in the prediction have been obtained as0 = 11.3,
A = 0.8 by fitting the continuum solution to a configuration obtained from a 500 time unit run
with damping, but without noise.Esoliton≈ 0.354.

cause, we study their behaviour in the case of the soliton of width0 = 10 andA = 1, where
the higher powers oft can be observed rather early, to reduce computing time.

6. Discussion

For sufficiently long times Var[X(t)] deviates from the predicted linear dependence ont . In the
derivation of the theoretical results we have neglected damping. Therefore, we have checked if
this approximation is the reason for the deviations. We have performed a simulation for soliton
parameters0 = 10 andA = 1, with no damping, i.e.ε = 0, but a variance of noise equal to
that obtained forε = 0.01, i.e.σ 2 = 2×0.01×kBT . The resulting graph for Var[X(t)], which
has not been included in this paper, up to tiny fluctuations, is identical to the corresponding
graph obtained with damping and in particular it exhibits the same deviations from theory.

Furthermore, the magnitude of the deviation depends significantly on the threshold
introduced in section 5. Numerical results with different thresholds butA, 0, T fixed are
shown in figure 2 for two spinlengthsS. All graphs relating to the sameS have been obtained
from identical spin dynamics, the only difference between the graphs being the threshold
values. Considering the deviation as a function of the threshold value and extrapolating this
to threshold zero yields a smaller, but still non-zero deviation.

The theoretical predictions for Var[X(t)], (22) and (27), are independent of the coupling
J and the spinlengthS. The general observation is that the deviations increase (decrease) with
increasing (decreasing)JS. In figure 2,J andS are varied in such a way thatJS remains
constant. Scaling the threshold with the spinlength results in practically identical deviations,
for instance the deviation is the same forJ = 1, S = 1, threshold value 0.1 and forJ = 0.5,
S = 2, threshold value 0.2. Note that the initial slopes of all graphs shown in figure 2 agree with
each other and with the theoretical prediction. As we have already pointed out in section 4,
we neglect noise-induced magnons in our theoretical calculations. Thus, we think that the
observed deviations from theory are caused by these fluctuations. An investigation of the
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dynamical effects of magnons, for instance along the lines exposed in [7] for theφ4 and in [5]
for the sine–Gordon system, requires careful attention to the different behaviour of magnons
in a continuum and a discrete system; for instance differences occur in the magnon dispersion
relation and the soliton–magnon interaction. Though definitely interesting, this investigation is
beyond the scope of the present paper. While the magnons will surely influence the dynamics,
they may also lead to errors in the determination of the soliton position which result from the
fact that under noise one never observes the pure soliton structure on the chain, but always the
soliton in the midst of interaction with thermal excitations. Below we discuss the latter effects.
The discreteness of the system can amplify these effects of the magnons: when determining
the soliton position as first moment of one of the weight functions (10) and (23), only sites
where the value of the weight function exceedes a threshold are taken into account. Consider
now for instance a site where the unperturbed weight function would be only slightly higher
than the threshold. At this site even a very small fluctuation can reduce the weight function to
a value below the threshold, so the site no longer contributes to the sums in formulae (10) and
(23). A site of the discrete model corresponds to a part of the continuum chain which has a
spatial extent of one lattice constant. In the continuum, however, a fluctuation at a point where
the weight function is slightly above the threshold need not cut an area of a width of one lattice
constant from the integrals replacing the sums in (10) and (23). The region cut out may be far
smaller, if the fluctuation is sufficiently localized; not so for the discrete chain. For broader
excitations this effect is suppressed, as a broader excitation encompasses a larger number of
sites where the weight function is well above the threshold. Raising the threshold for a given
excitation leaves a smaller part of the soliton to be taken into account in the determination of
X, in particular a lower number of sites. Thus the weight of an error, caused by discreteness
or otherwise, usually increases in comparison to the part of the weight function still above the
threshold. As the excitations have finite size, deviations do not disappear when extrapolated
to threshold zero, but assume a minimum non-zero magnitude corresponding to a minimum
relative weight of a given error.

IncreasingJS causes both fluctuations and the soliton to travel faster along the chain and
so more magnons per time unit will interact with the soliton and pass those sites where the
unperturbed weight function is close to the threshold. Therefore, the determination ofX will
pick up more errors and the deviations increase. LoweringJS reduces the speed of fluctuations
and solitons, consistently resulting in reduced deviations.

Varying J and S with JS fixed keeps all speeds constant. If, for any given spin
configuration, the threshold is scaled with the spinlength, the weight functionS−Sz will always
be above or below the threshold value at exactly the same sites. Thus the sites contributing
to the sums in (10) will also be the same. If a part of the spin configuration is excluded from
these sums because of the discreteness of the system, as described above, the magnitude of the
resulting error in each of the sums will scale with the spinlength, because the weight function
scales withS. Any errors due to neglected distortions of the part of the weight function above
the threshold should scale withS as well, at least approximately. These factors, however, will
mutually cancel between numerator and denominator of the fraction definingX, (10). Thus the
net error will be the same for different spinlengths. This explains the scaling of the deviations
shown in figure 2.

Finally we want to discuss the meaning of the differing results derived in section 4 and
confirmed by simulations in section 5. The disagreement between the results for the two
definitions used as examples in this paper has been explained with the different way a given
deformation of the spin configuration is translated into a position shift by each weight function.
However, as the soliton itself, the weight functions are localized. Therefore, one can expect that
there is an upper limit for the magnitude of the position shifts, above which these differences
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are no longer dominant. Consider for example several realizations for a soliton of given width
0. Assume that the positions of the soliton differ between the realizations by several 100
widths on the average. Then the variance of the position is dominated by this large average
separation, and not by the different answers from different ways of evaluating the position,
because these differences obviously are restricted to an order of magnitude comparable to the
width of the excitation.

We think that none of our results can be reckoned to belong to this long-time regime.
Especially, the deviations observed cannot be considered as the onset of a cross-over behaviour,
because for this they show much too early, at standard deviations of the position corresponding
to about 0.006 times the width(0 = 10,A = 1, T = 0.001, t = 25); furthermore, for given
soliton parameters the deviations occurring for both definitions of the position show no signs
of asymptotically approaching a common value.

The long-time regime where the differences between the definitions are suppressed can
probably not be reached at all. In order to achieve sufficiently large standard deviations, one
would have to consider very long times, during which, however, the damping changes the
soliton parameters significantly. In particular the width increases drastically; thus, while one
is waiting for the standard deviation to grow large enough to be comparable to the original width
of the soliton, the width itself grows strongly. Finally, the soliton is destroyed by the damping.
Performing simulations without damping would lead to the soliton being completely submersed
in magnons after some time, and so the soliton can no longer be detected. Moreover, the case
without damping is rather unphysical, as the fluctuation-dissipation theorem is violated.

7. Summary and conclusion

We have studied the effects of noise on the trajectories of solitary excitations on a discrete
Heisenberg chain. Using the first moments of the weight functionsS − Sz or (Sx)2 + (Sy)2 as
examples of definitions ofX(t) we have predicted a linear dependence of Var[X(t)] on time.
Each definition provides a different result for the slope of the pertaining graph. The difference
occurs because the excitations are not rigid, but can be distorted by fluctuations. Then the
corresponding distortions of each weight function shift the value of the position calculated as
first moment of the respective weight function. This dependence shows that care has to be
taken as to which theoretical result is to be compared with which numerical result; it must be
assured that the definition used in the theory corresponds to that used in the numerical work.
The need for this care is most likely not limited to the Heisenberg chain.

We have found that for not too large time scales (depending on the soliton parameters)
theory and simulations are in good agreement. In this time regime and in the temperature range
studied, the solitary excitations perform a random walk with an effective diffusion constant
depending on the soliton parameters0 andA and linearly on temperature. Furthermore, it has
turned out that our predictions apply to energetically saturated systems also, though only noise
enters the calculation while thermally excited magnons are neglected. For sufficiently long
times higher powers oft appear in the behaviour of Var[X(t)], both for an unsaturated and a
saturated system. We have related these deviations between theory and simulation to magnons
neglected in the calculations. On the one hand magnons can influence the dynamics of the
system, and this effect has not been studied here. On the other hand, magnons can lead to
errors in the determination of the soliton position, which has been discussed, and the relevant
conclusions have been supported by numerical results.

Note added in proof. Meanwhile we have found that the higher powers oft appearing in Var[X(t)] can be related to
stochastic fluctuations of the soliton structure. These fluctuations can be captured by a different approach based on
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implicit collective coordinates (see [1] for a definition of the latter). This approach reproduces the higher than linear
powers oft in Var[X(t)] as observed in spin dynamics simulations.
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